Safe Handling of Nanomaterials

Presented by: Ron Pearson, M.S., CIH Environmental Health & Safety, Inc.

Today's Presentation:

- Overview of history and definitions
- Examples of products using nanotechnology
- Discussion of data and data gaps
- Brief overview of exposure monitoring issues
- Guidance on ranking of hazards and control schemes

Today's presentation will <u>not</u> cover safety issues related to:

- Flammability
- Explosivity
- Reactivity

Nanoparticles are found in many places we may not consider...

- Welding fumes
- Diesel exhaust
- Smoke from cooking indoors
- Smoke from candles

What is an

"engineered nanoparticle"?

- There are multiple characterization schemes
- Most common definition is a particle <100 nm, designed and manufactured by people

• Forms:

- Aggregated group of particles that are tightly bonded (e.g. 'sintered', 'fused')
- Agglomerated group of particles (typically held together by "Van der Waals" forces) easily broken apart by handling

Shapes:

- Spherical
- Irregular
- Tubular

Examples of Engineered Nanoparticles

- Carbon Nanotubes carbon atoms (single or multi-layer), arranged in a cylindrical tube
 - Needle type of shape similar to some types of asbestos - concerns regarding similar hazard(?)
- "Quantum Dots" metallic particle assemblies, with unique physical properties:
 - electrical
 - optical
 - magnetic
 - catalytic

Some products currently utilizing nanotechnology

Health	Electronics	Household	Misc.
Air filters	Computer	Canola oil	Lubricants
Sunscreen	components	Golf clubs	Coatings
Antibacterial	and	Skis	
treatments	displays	Cosmetics	
Stain		Toothpaste	
Resistors			

Increasing Complexity

First Generation ~2001: Passive nanostructures

Nano-structured coatings, nanoparticles, nanostructured metals, polymers, ceramics, Catalysts, composites, displays

\bigcirc

Second Generation ~Now: Active nanostructures

Transistors, amplifiers, targeted drugs and chemicals, actuators, adaptive structures, sensors, diagnostic assays, fuel cells, solar cells, high performance nanocomposites, ceramics, metals

Third Generation ~ 2010: 3-D nanosystems and systems of nanosystems

Various assembly techniques, networking at the nanoscale and new architectures, Biomimetic materials, novel therapeutics/targeted drug delivery

Fourth Generation ~2015 Molecular Nanosystems

Molecular devices "by design", atomic design, emerging functions

Public Awareness and Regulatory Trends

 The introduction of new technologies in the past (e.g. nuclear power) goes through a predictable course

DEVELOPMENT

USE

Precautionary Principle ??

SOCIAL CONCERN

REGULATION

RESOLUTION

Public Awareness and Regulatory Trends

 2007 - Berkeley, CA - City ordinance enacted requiring researchers and manufacturers to disclose use/manufacture of nanoparticles

Red Herring?

- Germany "Magic Nano" Sealing Spray
- Sealing spray for glass/ceramic surfaces
- Within 3 days of being on the market, > 150 consumers reported strong cough, shortness of breath, and some with pulmonary edema after use
- Health effects were determined to be related to an additive - no nano-sized particles were even present (referred to thickness of applied film)

Nanoparticle hazards

 Unfortunately, the very same physico-chemical properties that make them attractive for use, also make them unpredictable in their consequences for deleterious effects on humans and the environment....

 In general - a smaller particle of identical chemical composition is thought to be more hazardous than a larger particle

Nanoparticle hazards background information

- The behavior of nanoparticles in the body is very different from larger particles of the same element/compound - e.g. permeation of the "bloodbrain barrier"
- Epidemiological studies suggest exposure to ultrafine particles (generally non-'engineered' nanoparticles) increases cardiopulmonary hazards
- Dermal exposure hazard is also suggested by several studies
- Particle size, surface area, and surface activity may all influence toxicity

Lung Absorption of Particles

- The most important characteristics are aerosol size and water solubility
- particles of 2 to 5 um deposited mainly in tracheobronchiolar regions, cleared by ciliated portions
- particles <1 um penetrate to the alveolar sacs of the lungs, may be absorbed into blood

The Blood-brain barrier

- Unique physiological feature in the human body - is less permeable than are most other
 - areas of the body Lipid/fat solubility plays an importan
- Lipid/fat solubility plays an important role
- A few chemicals can enter the brain by carrier-mediated processes - e.g. methylmercury
- Many nanoparticles are thought to pass through the blood-brain barrier readily

Nanoparticle hazards background information

- A primary difficulty in conducting toxicity studies is generating a reliably sized and measurable particle stream for inhalation studies
- ♦ Self-mitigating behavior of some nanoparticles:
 aggregation → chain-formation → sedimentation
- ♦ 3 groups of particles (by size):
 - Small (< 80 nm) agglomerate quickly, settle
 - Large (>2000 nm) coarse, settle quickly
 - Intermediate (80 2000 nm) 'accumulate', but can stay suspended in air for days to weeks

"Raw" Carbon Nanotubes

Agglomerated Nanotube

Environmental Fate of Nanoparticles

- <u>Bioavailability</u> can the material be taken into a 'target organ' to cause ill effects
- <u>Bioaccumulation</u> how likely is it to be stored in the body for extended time periods
- <u>Biotransformation</u> can the material be changed to a more toxic compound
- None of these issues are well understood yet

Nanoparticle Exposure Assessment

- Air sampling methods have had very limited validation
- There is significant uncertainty regarding evaluation and control of potential exposures

Nanoparticle Exposure Assessment

 Comprehensive exposure assessment has to consider many factors:

- particle size
- particle surface area
- particle shape
- surface chemistry
- mass concentration
- degree of agglomeration

Occupational Exposures

Synthesis Process	Particle Formation	Exposure Source or Worker Activity	Primary Exposure Route	
Gas Phase in air		Direct leakage from reactor, especially if the reactor is operated at positive pressure.	Inhalation	
		Product recovery from bag filters in reactors.	Inhalation / Dermal	
		Processing and packaging of dry powder.	Inhalation / Dermal	
		Equipment cleaning/maintenance (including reactor evacuation and spent filters).	Dermal (and Inhalation during reactor evacuation)	
Vapor Deposition on substrate		Product recovery from reactor/dry contamination of workplace.	Inhalation	
		Processing and packaging of dry powder.	Inhalation / Dermal	
		Equipment cleaning/maintenance (including reactor evacuation).	Dermal (and Inhalation during reactor evacuation)	
Colloidal/ Attrition liquid suspension powder, a powder.		If liquid suspension is processed into a powder, potential exposure during spray drying to create a powder, and the processing and packaging of the dry powder.	Inhalation / Dermal	
		Equipment cleaning/maintenance.	Dermal	

Hazard Controls

• Control banding is the best available risk management framework at this time, given:

Lack of toxicity data

- Lack of standards exposure monitoring methods
- Lack of occupational exposure standards

Classification scheme for selecting lab-scale controls*

	Quantity	Haz.	Haz.	Haz.	Haz.
"Dustiness"	Handled	Class	Class	Class	Class
		А	В	С	D
Solids or Sealed Containers	Any	LB1	LB1	LB1	LB1
Suspensions with Minimal	Any	LB1	LB1	LB1	LB1
Potential for Droplet					
Dispersion					
Granular/ Agglomerated	< 100 mg	LB1	LB1	LB1	LB1
Powders or Dispersible	100 mg – 1 kg	LB1	LB1	LB1	LB1-2
Suspensions					
Powders	< 100 mg	LB1	LB1	LB2	LB2
	100 mg – 1 kg	LB1	LB1	LB2	LB2
Highly Dispersible Powders	< 100 mg	LB1	LB1-2	LB2	LB3
	100 mg - 1 kg	LB1	LB2	LB2	LB3

* credit to AIHA Distance Learning Program

Lab Hazard Controls

LB 1	LB 2	LB 3
• Open bench operations.	• Use fume hoods	• Consider placing
• Keep sample containers	or local exhaust	analytical equipment
sealed.	to collect vapors	inside ventilated
• Clean surfaces around	and gases from	enclosures.
analytical equipment	lab analyses.	
• frequently.	• Use local exhaust	
• Collect waste in sealed	if powders are	
containers with spill	released.	
basins.		

NOTE RE ENGINEERING CONTROLS (!) - Containment must be 'complete' (no leaks), or nanoparticles may escape and become suspended in room air

Respirators as PPE

- NIOSH Certifies particle filtering respirators by 'challenging' them with either:
 - sodium chloride aerosols (75 nm particle size)
 - or dioctyl phthalate (185 nm particle size)
- Leakage around the face-seal is likely to pose a greater exposure risk than penetration through the filtration matrix (but on the same order as a gas or vapor)

General Hazard Reduction Strategies

- Designate handling areas post, limit access
- If material is a dry powder, or pelletized determine if it can be handled as a liquid or slurry
- Minimize aerosolization potential slow stirring speeds, airtight transfer points, pouring
- Purchase dry material in pre-weighed portions
- Use local exhaust where possible to ventilate transfer points, bulk material handling
- Use wet wiping methods and HEPA vacuums only to clean up any spills

Note: a number of the graphics used in this presentation were excerpted from the U.S. EPA "Nanotechnology White Paper", February, 2007